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Abstract 
 
 

Diabetes is a chronic disorder affecting vascular health, often altering pulse wave characteristics. 

Traditional pulse wave analysis (PWA) methods face challenges such as variability and 

complexity of signals. This study aims to overcome these limitations by leveraging deep learning 

models for more accurate and efficient classification. The methodology used in this study involves 

four key steps: data collection, data preprocessing, Convolutional Neural Network (CNN) model 

development, and model evaluation. Primary data were collected using a multipara patient 

monitor, including finger photoplethysmography (PPG) signals, blood pressure, mean arterial 

pressure, oxygen saturation, and pulse rate. Single pulse wave cycles from 60 healthy individuals 

and 60 patients with type 2 diabetes underwent preprocessing. The CNN model was trained using 

50 PPG images from each group and achieved a training accuracy of 92%. The prediction 

capability of the model was evaluated using 20 unseen images, comprising 10 healthy and 10 

diabetes PPG images. It attained a 90% overall test accuracy in distinguishing between PPG 

images of individuals with diabetes and those who are healthy. These findings suggest that CNN-

based analysis of PPG signals provides a precise, non-invasive tool for diabetes screening. To 

further enhance accuracy, future studies should focus on increasing the dataset size and 

performing hyperparameter tuning to optimize the CNN model. 

Keywords:  Pulse wave analysis, Diabetes screening, Non-invasive, Signal processing 

 
 

Article info  ISSN (E-Copy): ISSN 3051-5262 

ISSN (Hard copy): ISSN 3051-5602 

Doi: https://doi.org/10.4038/jmtr.v9i1.17   
ORCID iD: https://orcid.org/0009-0000-7160-2904         

*Corresponding author:   

E-mail address: hirunij@gwu.ac.lk  (Hiruni J. Gunathilaka) 

© 2024 JMTR, CC BY-NC-SA 

 

Article history: 

Received 4th May 2024 

Received in revised form 15th June 2024 

Accepted 21st June 2024 

Available online 30th June 2024 

 

Journal of Multidisciplinary and Translational 
Research (JMTR) 

 
journal homepage: https://journals.kln.ac.lk/jmtr/  

https://doi.org/10.4038/jmtr.v9i1.17
https://orcid.org/0009-0000-7160-2904
https://orcid.org/0000-0002-8461-8339
mailto:hirunij@gwu.ac.lk
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://journals.kln.ac.lk/jmtr/


Journal of Multidisciplinary and Translational Research (JMTR), Volume 9, Issue I Hiruni J. Gunathilaka 

 

 

86 | P a g e  

 

 

Introduction 

Diabetes is a chronic metabolic disorder that affects millions of people worldwide (Nirala et al., 

2019). It leads to numerous serious health complications, including cardiovascular diseases, renal 

disorders, nervous system damage, and vision impairment. If blood glucose levels are not 

adequately monitored and managed, these conditions can worsen, potentially causing organ 

failures and eventually resulting in death. Diabetes can impair the function and structure of the 

arteries, leading to changes in pulse wave characteristics (Fan et al., 2011).  

There is a demand for an accurate and reliable non-invasive blood glucose (NIBG) measurement 

technique, which has been extensively researched (Darwich et al., 2023) (Di Filippo et al., 2023). 

In contrast, finger-prick blood glucose (BG) measurement, being invasive, causes pain and 

discomfort and carries a risk of infection (Ahmed et al., 2022). NIBG technology has the potential 

to significantly enhance the quality of life for diabetic patients by eliminating the pain associated 

with frequent invasive measurements (Tang et al., 2020). Among the various NIBG methods 

studied, photoplethysmography (PPG) stands out due to its simplicity, low cost, and potential for 

widespread integration into wearable devices (Chu et al., 2021). PPG has already proven 

successful in measuring oxygen saturation (SpO2) and pulse rate, making it a promising option 

for non-invasive blood glucose monitoring (Susana et al., 2022). 

A PPG device measures changes in the transmittance or reflectance of near-infrared light as blood 

flows through peripheral capillaries (Reiss et al., 2019). Light absorption and reflectance at 

specific wavelengths are sensitive to the hemodynamic properties of the body, which are closely 

linked to cardiovascular health (Shin et al., 2022). Since long-term blood glucose levels impact 

the cardiovascular system and can be observed through pulse morphology profiles, identifying a 

correlation between PPG pulse morphology and blood glucose levels could be a promising 

approach for NIBG prediction (Susana et al., 2022). 

Prior research on analyzing NIBG measurements has explored a range of machine learning 

models including support vector machine (SVM) (Bunescu et al., 2013), random forest (Georga et 

al., 2012), K-nearest Neighbor (KNN)  (Altman, 1992), Gaussian process regression (GPR) 

(Tomczak, 2017), and artificial neural network (ANN) (Yadav et al., 2017). These studies have 

investigated numerous morphological profiles and heart-rate-variance features extracted from 

PPG signals, which are linked to vascular function and autonomic neuropathy. Various signal-

processing techniques like Fast Fourier transform (FFT), (Kaiser-Teager energy) KTE, and 

spectral entropy have also been utilized to extract features across different domains (Chu et al., 

2021). The studies on non-invasive blood glucose prediction using deep learning and 

photoplethysmography demonstrated high accuracy (Chu et al., 2021) (Lu et al., 2022). These 

advancements promise improved, non-invasive diabetes detection. 

Convolutional neural networks (CNNs) are a class of deep learning models with the capability to 

discern intricate patterns and features within complex datasets like images, speech, or text 

(Alzubaidi et al., 2021). CNNs have achieved remarkable results in various fields of machine 

learning and artificial intelligence, especially in computer vision and image processing. CNNs can 

automatically learn relevant features from raw data without human intervention or prior 
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knowledge, making them suitable for analyzing complex and noisy signals such as pulse waves 

(Li et al., 2019). 

This study proposed to use CNNs to classify PPG wave images obtained from the PPG device of 

multipara patient monitor into diabetic or non-diabetic subjects. The hypothesis was that CNNs 

could achieve high accuracy in discriminating between diabetic and non-diabetic pulse waves. 

The significance of this study lies in its potential to introduce an innovative approach to utilizing 

PPG signals for diabetes screening. Unlike other methods, PPG images were directly input into the 

CNN without prior time-domain or frequency-domain analysis. Among various deep learning 

models previously reported for PPG analysis, CNNs were chosen for their effectiveness in 

automatically extracting features from complex data, surpassing manual feature extraction, and 

they are particularly well-suited for image processing tasks (Chu et al., 2021). 

Materials and Methods 

Ethical clearance was obtained from the Ethics Review Committee of the University of Kelaniya 

prior to the initiation of the study. The methodology of this study consists of four main steps: data 

collection, data preprocessing, CNN model development, and model evaluation. 

Study settings  

The study was conducted at the medical clinics of the Base Hospital, Kiribathgoda, the Family 

Medicine Clinic at the Faculty of Medicine, University of Kelaniya, and Gampaha Wickramarachchi 

Ayurveda Teaching Hospital. Healthy individuals were recruited from those accompanying the 

patients. 

Inclusion criteria 

For individuals with diabetes, the selection criteria included the confirmed diagnosis of type 2 

diabetes (based on fasting glucose levels of ≥126 mg/dL), age 18 or older, and absence of 

cardiovascular disease history, with diagnoses confirmed by the consultant physician at the study 

setting. Age and gender-matched individuals were selected for the control group based on health 

criteria, ensuring the absence of significant medical conditions or major surgical history. 

Eligibility mandated a BMI within the healthy range of 18.5-24.9 kg/m², oxygen saturation levels 

above 95%, stable pulse rate between 60 to 100 beats per minute, and blood pressure within the 

normal range, specifically below 120/80 mmHg but not less than 90/60 mmHg. 

Exclusion criteria 

The study excluded participants based on the following criteria: individuals younger than 18 

years, those with severe psychiatric disorders or cognitive impairments that could interfere with 

the interview process, individuals with acute or chronic infections, pregnant or lactating women, 

cancer patients, and individuals with undiagnosed medical conditions. 



Journal of Multidisciplinary and Translational Research (JMTR), Volume 9, Issue I Hiruni J. Gunathilaka 

 

 

88 | P a g e  

 

 

Sample size 

Deep learning (DL) requires substantial data for well-behaved models (Wang et al., 2019).  For 

this study, 120 participants were chosen for the diabetic and healthy groups, primarily for ease 

of data management during the initial stages. Out of 60 images from each group, 50 images were 

used as training data, while the remaining 10 from each group were not introduced to the model 

during training, and the predictions of the model were later checked using these 20 unassessed 

images. Future studies will aim to expand the sample size. While 60 samples per group may 

suffice for preliminary analysis, rigorous validation of results is imperative, alongside the 

implementation of methodologies to address the inherent limitations of a small sample size. 

Furthermore, collecting additional data is strongly recommended, as it typically enhances the 

performance of CNN models. It is crucial that the dataset represents a wide range of variations 

seen in finger pulse images. 

Data collection 

The primary objective of this study is to differentiate between the PPG signals of healthy 

individuals and those of patients with diabetes. Data was collected from 60 individuals in each 

group with informed consent. This study employed the multiparameter patient monitor depicted 

in Figure 1 (Model: Datalys 760, Lutech Medical, USA) to collect non-invasive PPG, systolic blood 

pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), oxygen saturation 

(SpO2), and pulse rate. 
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Figure 1 Lutech Datalys 760 Multipara Patient Monitor along with its components: the blood 
pressure cuff and the SpO₂ probe used for collecting PPG signals, oxygen saturation, 
pulse rate, and blood pressure for the study. 

The Datalys 760 delivers both waveform and numerical data, along with trend analysis, making 

it ideal for continuous monitoring. Accurate collection of PPG images is critical in this study, as 

high-precision data is essential for inputting into the CNN. PPG signals were exported by 

connecting the device to a printer, a crucial step for signal analysis. These specifications were 

https://doi.org/10.4172/2155-9546.1000328
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fundamental for the methodology, ensuring the precise data required for effective PPG signal 

analysis. 

The PPG signal is sensitive to the subject's movements and breathing activity, which can cause 

shifts and offsets in the baseline of the signal (Al Fahoum et al., 2023). To mitigate these artifacts, 

participants were instructed to sit comfortably without moving and to breathe normally during 

the measurement. The SpO2 probe was securely attached to their left index finger to ensure stable 

data collection, and the PPG signal was recorded for at least 1 minute.  

Participant information was gathered using an interviewer-administered questionnaire that 

covered a range of variables, including age, gender, medical history, presence of other illnesses, 

medication history, surgical history, Body Mass Index (BMI), recorded investigation results, and 

diagnosis. This thorough approach ensured a comprehensive understanding of each participant's 

health status and background. 

Data preprocessing 

The PPG signals obtained from the patient monitor were processed to prepare them for analysis. 

Initially, each pulse wave recording was examined, and one single pulse wave cycle was isolated 

for each subject. This step was crucial to ensure that the analysis focused on the characteristic 

shape and features of a typical pulse wave, eliminating any extraneous data that could introduce 

noise or variability. Once the single pulse wave cycles were isolated, these cropped images 

underwent a series of preprocessing steps designed to standardize the data for the machine 

learning model. Image preprocessing began with resizing each pulse wave image to a uniform 

size of 75x100 pixels. This resizing was essential to ensure that all images fed into the model had 

the same dimensions, facilitating consistent processing and comparison across the dataset. 

In addition to resizing, the pixel values of the images were rescaled to a specific range, typically 

[0, 1]. This rescaling process normalized the pixel values, making the data more suitable for the 

model by ensuring that the input values were within a standardized range. Normalization is a 

common practice in image processing and machine learning, as it helps improve the convergence 

rate of the training process and enhances the model's performance (Koo & Cha, 2017). Through 

these preprocessing steps, the images were transformed into a consistent and standardized 

format, ready for input into the CNN model. The goal was to optimize the model's ability to 

accurately analyze and classify the pulse wave images, distinguishing between different health 

conditions based on their unique characteristics. Figure 2 displays a selection of these 

preprocessed PPG waves from the diabetes group, illustrating the uniform appearance and 

standardized format of the data after preprocessing. This careful preparation of the images was 

a critical step in ensuring the reliability and accuracy of the subsequent analysis. 
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Figure 2 Representative preprocessed finger PPG signals from type 2 diabetes patients (left) and 
healthy individuals (right) highlighting characteristic differences in pulse waveforms. 

Model development and evaluation 

The CNN model architecture was defined using the Keras Sequential API. This architecture 

typically comprises convolutional layers for feature extraction, max-pooling layers for down 

sampling, flattening layers to transform feature maps into vectors, and fully connected (dense) 

layers for classification. The architecture was configured with specific parameters, including the 

number of layers, filter sizes, and activation functions. The model was compiled with an optimizer 

(Adam), a loss function (categorical cross-entropy), and accuracy as the evaluation metric. Model 

compilation configures the learning process for training (Talaat et al., 2023). The CNN model was 

trained using 100 prepared and preprocessed images. Training involves iteratively adjusting the 

internal parameters of the model (weights and biases) to minimize the loss function while making 

accurate predictions (Alzubaidi et al., 2021). This process was carried out over a specified number 

of epochs.  

For evaluation, the prediction capability of the model was tested on individual images using 20 

unassessed images, comprising 10 PPG images from healthy subjects and 10 PPG images from 

subjects presented with diabetes. Each image was loaded, resized, converted to an array, rescaled, 

and expanded to include a batch dimension. The model then predicted the class of each image 

based on output probabilities, with the final class label printed to indicate performance.  

Statistical analysis  

The clinical relevance and applicability of the CNN-based algorithm for PWA were evaluated by 

analyzing its correlations with various parameters, including age, gender, BMI, SBP, DBP, pulse 

pressure (PP), MAP, pulse rate, and oxygen saturation, using Pearson's correlation analysis, with 

significance levels set at p < 0.05. 

Results 

The CNN model achieved the best performance with a training accuracy of 92% in classifying the 

pulse images into diabetic or non-diabetic subjects. The training accuracy and loss curves of this 

model are shown in Figure 3. It provides insights into the learning process of the model. The 

steady increase in accuracy and decrease in loss during training signifies the successful 
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convergence of the CNN model. The convergence pattern indicates that the model effectively 

learned the intricate patterns in the pulse wave images, enhancing its predictive capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Accuracy and loss curves of the CNN model 

As depicted in Table 1, the model correctly predicted 8 out of 10 healthy PPG images, 

demonstrating its ability to accurately identify healthy cases. Additionally, it accurately predicted 

all 10 diabetes PPG images, indicating a high level of precision in detecting diabetic cases. Overall, 

the model correctly predicted 18 out of 20 unassessed images, resulting in an overall test 

accuracy of 90%. This reported accuracy reflects the performance of the model under the test 

conditions, with efforts made to minimize the influence of potential confounding factors.  

Table 1 Model prediction performance on unassessed healthy and diabetes PPG images 

Image Type Total Images Correct Predictions Accuracy Rate 

Healthy PPG Images 10 8 80% 

Diabetes PPG Images 10 10 100% 

Overall 20 18 90% 

 

The descriptive statistics of the demographic and clinical data of the subjects are shown in Table 

2, where n represents the number of subjects in each group. According to the descriptive 

statistics, it is evident that individuals in the control group were carefully matched with the 
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diabetic group in terms of age and gender. This matching ensures that any observed differences 

between the two groups can be more confidently attributed to diabetes-related factors rather 

than age or gender variations. In diabetes research, it is crucial to match control groups with 

diabetic groups to ensure the validity of the study results (Hina & Saadeh, 2022). 

Table 2 Descriptive statistics of the demographic and clinical data of the subjects 

Variable Diabetic group (n = 60) Control group (n = 60) p-value 

Age (years) 52.4 ± 9.8 49.6 ± 8.7 0.12 

Gender (Male/Female) 30/30 30/30 1.00 

BMI (kg/m2) 25.3 ± 3.9 24.4 ± 3.6 0.15 

SBP (mmHg) 132.8 ± 22.9 111.1 ± 9.9 <0.001 

DBP (mmHg) 72.8 ± 11.4 67.7 ± 8.5 <0.001 

PP (mmHg) 60.0 ± 15.0  43.4 ± 6.7 <0.001 

MAP (mmHg) 93.0 ± 13.1 82.2 ± 7.6 <0.001 

Pulse rate (bpm) 76.7 ± 10.3 76.6 ± 10.1 0.993 

Oxygen saturation (%) 98.4 ± 0.9 99.1 ± 0.4 <0.001 

 

Discussion 

The findings of this study highlight the significant potential of using Convolutional Neural 

Networks (CNNs) for the classification of diabetic and healthy individuals based on finger pulse 

wave analysis. Compared to previous studies (Susana et al., 2022) (Chu et al., 2021) (Lu et al., 

2022) which primarily focused on predicting diabetes using photoplethysmography (PPG) 

signals, this study offers a novel approach by employing CNN for image processing without the 

need for feature extraction. The CNN model achieved a training accuracy of 92%, indicating 

strong performance on the training dataset. More importantly, the model attained an overall test 

accuracy of 90%, highlighting the effectiveness of CNN in extracting and learning from complex 

patterns within the PPG wave data. While both training and test accuracies are important, test 

accuracy is the most critical measure of a performance of a model. It provides valuable insight 

into how well the model generalizes beyond the training dataset, indicating its potential 

effectiveness in real-world applications (Talaat et al., 2023). 

The misclassification of two healthy PPG images as diabetic could be attributed to several factors, 

including insufficient model training, limited sample size, or potential underlying pathologies in 

the individuals classified as healthy. These individuals were included in the healthy group based 

on criteria such as having a BMI, oxygen saturation, pulse rate, and blood pressure within the 

normal range, and no previous history of diabetes. However, it is possible that these individuals 

had underlying health issues that were not detected during the initial screening, which may have 

influenced the predictions of the model. One limitation of this study is the absence of blood 

glucose level measurements in the screening process, which could have enhanced accuracy and 

provided a more comprehensive assessment of the participants' health status. Future studies 
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should address this by including blood glucose level measurements to improve the robustness of 

the findings. 

In comparison to other studies, such as those employing Deduction Learning  or ensemble 

methods (Lu et al., 2022), the CNN-based approach provides a unique advantage in terms of 

directly utilizing pulse wave characteristics for classification. This direct classification method 

simplifies the diagnostic process and offers immediate insights into an individual's health status, 

making it a valuable tool for early detection and intervention. Incorporating image processing 

into PPG analysis offers significant advantages in terms of feature extraction, noise reduction, 

model performance, automation, clinical relevance, and comprehensive analysis.  

Proper preprocessing steps, such as cropping, resizing, and normalization of pulse wave images, 

may have enhanced the model's ability to extract relevant features. Pulse waves carry 

information about the cardiovascular system, and certain features within these waveforms may 

be indicative of diabetic or non-diabetic status. CNN may have successfully learned and exploited 

these features. PPG images fed into the CNN architecture for image processing help to elucidate 

blood glucose variations among samples. However, numerous factors can also influence PPG 

waveform variation, including finger temperature, probe contact, blood pressure, heart rate 

variability, vascular tone, and individual differences in skin thickness or hydration. These 

confounding factors can significantly impact the cardiovascular system and PPG readings. (Chu 

et al., 2021). A limitation of this study is the lack of comprehensive assessment and control of 

these confounding factors, which may have affected the accuracy of the results. Future studies 

should aim to assess and control for these variables to ensure more reliable and accurate findings.  

It is important to note the limitations of this study, including the relatively small sample size and 

the need for larger and more diverse datasets to further validate the performance of the model. 

To enhance accuracy and as part of future efforts, increasing the dataset size by including more 

subjects can strengthen the robustness of the model and its ability to generalize. This expansion 

may require collecting data from diverse populations to account for variations. Additionally, 

hyperparameter tuning is essential for optimizing the CNN model. Parameters such as learning 

rate, batch size, and network architecture should be adjusted to determine the most suitable 

configuration for this specific task. 

Finally, for clinical applications, although our PPG-based diabetes detection method is still in its 

early stages and needs further refinement across various clinical settings, it shows promise in 

certain treatment scenarios. For instance, it is well-suited for preventive healthcare, such as 

regular diabetes monitoring to manage progression in healthy or high-risk individuals who are 

not yet under medical treatment but may face severe diabetes-related issues. Future studies will 

focus on predicting NIBG levels. If the prediction accuracy of the method improves, it could rival 

continuous glucose monitoring (CGM) devices. Many CGM methods are already commercialized 

and are significantly less invasive than standard finger-prick sampling. However, CGM sensors 

still require the sampling of body fluids like sweat, interstitial fluids, tears, and saliva (Hina & 

Saadeh, 2022). CGM sensors typically have a lifespan of 7 to 14 days and need calibration every 

12 to 24 hours due to a potential 10-15% discrepancy with finger-prick blood glucose 

measurements. Conversely, our method seeks to remove invasiveness and extend monitoring 

longevity by incorporating a wearable device. 
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Conclusions 

The findings of this pilot study demonstrate the potential of convolutional neural networks 

(CNNs) for precise PPG wave analysis, achieving test accuracy of 90% in classifying PPG images 

into diabetic or non-diabetic subjects. The differences in cardiovascular parameters between the 

diabetic and control groups further underscore the importance of non-invasive diagnostic tools 

for early diabetes detection and risk stratification. The CNN-based approach holds promise for 

revolutionizing non-invasive diabetes detection and could significantly impact diabetes 

management and patient care. Future studies should include larger and more diverse cohorts to 

validate and generalize these results. Additionally, longitudinal follow-up is needed to assess the 

predictive value of the CNN-based approach for clinical outcomes. Further research into the 

underlying mechanisms of the CNN model and integration with digital health technologies can 

optimize its applicability in clinical settings. 
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