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ABSTRACT

The Lollipop graph LB, ,,defined in this paper is the coalescence
of a complete graph K,and a path P, with a pendent vertex.
Lollipop graph defined as a coalescence of a cycle and a path is
already studied from the view point of their spectrum and their
cospectral properties [1]. However, among various connected,
finite graphs, we are interested in partitioning techniques.
Spectral clustering methods use eigenvalues and eigenvectors of
associated matrices of graphs, where Laplacian matrices play a
vital role in finding clusters. There are some other non-
deterministic polynomial-time hard techniques to find clusters in
a graph. Minimum normalized cut is the one, which is widely used
in image segmentation. But there are some differences between
the partitions generated by these techniques. We are interested
in finding graphs, which perform poorly on spectral clustering
methods. The lollipop graph is one of the counter example graphs.
In this research, we find the general formula for the characteristic
polynomial of difference Laplacian matrix of a lollipop graph
LB, ,, . We find sign graphs based on their eigenvectors
corresssponding to the second smallest eigenvalue. We reviewed
the formula for the minimum normalized cut of a lollipop graph
LB, ., [2]. Finally, we compare the partitions of lollipop graph
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generated by the spectral clustering method and the minimum
normalized cut.

Keywords: Lollipop graph, Laplacian matrix, characteristic
polynomials, eigenvalue, eigenvectors, minimum normalized cut.

INTRODUCTION

In algebraic graph theory, matrix theory and linear algebra are used
to analyze adjacency matrix, difference Laplacian matrix and
normalized Laplacian matrix. Algebraic methods are especially
effective in treating graphs which are real symmetric. Spectral
graph theory is the study and exploration of graphs through the
eigenvalues and eigenvectors of matrices naturally associated with
those graphs. Interesting properties of graphs should be revealed
by these eigenvalues and eigenvectors.

There are several types of partitioning methods. Clustering or
partitioning method, that use eigenvalues and eigenvectors of
matrices associated with graph is called spectral clustering method.
Partitioning of graphs can be done by using minimum normalized
cut introduced by Shi and Malik. Eigenvectors of difference
Laplacian matrix, normalized Laplacian matrix or adjacency
matrix with negative off diagonal entries can be used to identify
the number of connected sign graphs of a given graph based on
their eigenvalues and eigenvectors. The goal of the partitioning is
to find groups such that entities within same groups are similar and
entities with different groups are dissimilar,

krow hcraeser siht fo evitcejbo ehTis alumrof lareneg eht dnif ot
eht rofcharacteristic polynomial of  no desab hparg popilloL
ecnereffidLaplacian matrix and  richt eigenvalues.Due to the
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complexity of graph with longer path, theeigenvalues and
eigenvectors  popilloL a fo graph LP, ,are considered to analyze
their partitions. Spectral clustering methods use eigenvalues and
eigenvectors of associated matrices of graphs, where Laplacian
matrices play a vital role in finding clusters. Clustering methods,
used in this research are based on sign patterns of eigenvectors
corresponding to the second smallest eigenvalue and minimum
normalized cut method of a Lollipop graph LP, ,.

PRELIMINARIES

A graph is an ordered pair G = (V(6),E(G)), where V(G) =
{v1,v3,...,1,} is a finite set called vertex set and E (G) consists of
two element subsets of V(G) called edge set. Two vertices v; and

v;0fG are called adjacent if {vi,vj} € E(G). The order of G is the

number of vertices in G. The size of G is the number of edges.
Definition 1:Difference Laplacian Matrix

The difference Laplacian matrix of G is the n X n matrix I, =
(lij ) x ndefined as

d if v = v,
li={-1 if(vi,vj)EEand v F v,
0 otherwise .

Definition 2(Weak Sign Graph)

A weak positive (negative) sign graph S is a maximal, connected
subgraph of G = (V,E), on vertices v €V withu; >0 (u; <0)
and with at least onev; € V having u; > 0 (u; < 0).

Definition 3(Strong Sign Graph)

A strong positive (negative) sign graph S is a maximal, connected
subgraph of G,on vertices v; € V with u; >0 (u; <0).

Definition 4(Graph cut)
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A subset of edges which disconnects the graph is called a graph
cut. Let G = (V,E,w) be a weighted graph and W = (wy;) the

weighted adjacency matrix. Then for 4,B c Vand AN B = ¢, the
graph cut is denoted by

cut (A,B) = Z Wi
i€A, €B
Definition 5(Normalized cut)
Let G = (V,E) be a connected graph. Let A,B < V,A # @B # ¢
and A N B = ¢The normalized cut, Ncut(A, B) of G is deﬁned by
1 L
Ncut(A,B) = cut (A, B) (UOI(A) + UOZ(B)

Definition 6(Minimum normalized cut (Mcut(G))
Let G = (V,E) be a connected graph. The minimum normalized
cut, Mcut(G) is defined by
Mcut(G) =min{Mcut;(G)|j = 1.2,.. .},
where
Mcut; (G) = min { Ncut(A,V\A) | Ac 'V, cut(4,V\A4) =,
A and V\A are connected.}
Definition 7:Lollipop Graph
A lollipop graph LB, ,, (n = 3,m = 1) is obtained by connecting a
vertex of complete Graph, K,, = (Vk, Ex) to the end vertex of path,

P, = (Vp,Ep) 5 where Vp = %1, %0, s Xl
andVy = {yl,yz, ..., Vn }. Define LB, ,, = (V, E) as follows:

- {leXZJ---’xmlyl»yZJ--'Jyn}
Ei= {(xi:xi+1)|1 <i<m-Ju{y)liFjl<isnl
Sj = n}U {(xm:yl)}'

Let Ep ={(x,x:)]1<i < m—1} and Ex ={ (i) | i #

j,1<i<n1<j< n} Then,
E=EpU Ex VU { (X, y1)}-
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Definition 8
For v € V(G), let L,(G) be the principal sub matrix of L(G)
formed by deleting the row and column corresponding to vertex v,
Lemma 1[3]
Letuv be a cut edge of a graph G. Let G — up = G; + G, where
Gy and G, are the components of G — uv, Gy + Gy is the sum of G,
and Gy, u € V(G,) and v € V(G,).
Then,
?(L(®) = o(L(6))) (L(G,)) - ®(L(G))) @(L,(Gy))
— O(L, (61))0(L(G,))
Here CD(L(G)) = deti(Al = L(G)) and & be a Laplacian
characteristic polynomial.
Lemma 2[2]
Letn = 3 and m > 1.We have the followings for a lollipop graph
LB, s
L. cla=-1) <cla) iffm>%(n2 —n+4)2<a<
72,
2. c(m) < Neut(A,(B), V\A,(B))(1 < B < n).
3. Wm= %(n2 —n+4), then c(m) < Ncut(B(a,ﬁ), v\

Lap,

(I<asm-21<pB<n)
RESULTS
Laplacian characteristic polynomial of a Lollipop graph LP,,
According to the equation of the Laplacian characteristic
polynomial of any graph, we have the Laplacian characteristic
polynomial of a Lollipop graph as

® (L(LAm)) = @ (L(LP,,1)) ®(L(Pa_))
—@ (L(Lpn,l)) (D(Lv(Pm—l))
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~0 (L (LP,1)) @(L(Pn-1))

m+n
G:LP, 1 .‘u v _
m m-1m-2 32
n
Gy LB, U
] n+l
1
v
3
Gt P 4
T g 3 2 'd
Figure 1

The Laplacian matrix of a graph LP, ; 1s
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The characteristic polynomial of a LP, ; is, |L(LP, ) = 21| =0

|L(LPR,1) - | =
1= -1 0 0 ... 0 0
-1 (n-2) -1 -1 ... -1 -
0 -1 (n-A-1-1 ... =1 1
0 1 ~1n—-21-1) ... o
0 = | m-1-1) -1
0 =) -1 =1 -1 (-21-1)

=(-ME2A-0) -1 D=1 (A= n)" 2 — (4 - n)
FED 00 - ) =m0
N—nn-2
= DA - HA- DGA- 1) - 1)(- 1)
DAL= VA= 2)A- n) - (-1)*(1 - 1))
= (1" - DA - (n + 1))(A — )2
So, the characteristic polynomial of a graph LP, { is,
0 (L(LP)) 2 AR - D(A - (n+ D)(A— )2 = 0
(1)
The difference Lalacian matrix of a path By 18
1 -1 0..0 0
=1 2 =% 0 D
L(P,_,) = O 5—15 2 0 E 0
0 0 0. 2 -1
0 0 0. =1 2 (m—1)(m-1)
We know that the Lalacian characteristic polynomial of a path
Py is
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O(L(Prn-1)) = [ - (2 — 2cos (%))] =0
)
where JE=

Similarly we can write the Lalacian characteristic polynomial of a
L, (P m—"l) is
®(L,(P,-1)) = CD(L(Pm_Z)) = [/"L — (2 — 2cos (%))] =0
(3)

where =
0, L& sopm—3
After deleting the row and column corresponding to vertex v from
the Laplacian matrix L(LP, 1), we get

n =l -1 .. -1 -1
-1 (n—-1) = e =T =
= =T 1) =i
-1 -1 -1.. o | =1,
Then,
® (Ly(LP1)) = [Lu(LPy) = 41| = 0
A-—n)"2V -—(n+DA+1)=0 4)

According to the equations (1), (2), (3) and (4) , we can get the
general formula for the characteristic polynomial of difference
Laplacian matrix of a Lollipop graph LB, .

Then,
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@ (L2Bm)) = @ (L(1P1)) S(LEP,_)
— @ (L(LPM)) O(L,(Py_1))
~® (L, (LP,1)) D(L(P,_1))=0

A=A -+ D)A=-n)n2x [/1 - (2 — 2COS( i ))]

m-—1
—AA =D -+ 1))(2 - n)r-2

X [}{ — (2 — 2cos (mnz 2))}
A= 22 — (n+ DA+ 1)

x [,1 ~ (2 — 2cos (mrf 1))] =0

Wherei = 0,1, w,m—=3andj=0,1,..,m—2

=7
(A — n)“—z{[ﬂ — (2 — 2c¢os (mji{ 1))] [/1(/1 — 1)(/1 - (n+ 1))

~ (- @+ DA+1)]
“AA=D(A-(n+ D) [A- (2 — 2cos (m-“f))]} =)

2
J—__ﬂ(/l — n)”_z{[ﬂ — (2 — ZCOS( nz 1))] [13 — (n+ 3)A?
+2(n+ 1A —1]
~22 =D~ (n+ D) [2- (2~ 2c0s (Z))p=0i=

m—

m

0,1,..,m—3 and j=01.,m-2

So, this is the Laplacian characteristic polynomial of a Lollipop
graph LB, .

Butdue to the complexity, consider the LP, , Lollipop graph to find
the eigenvalue and ei genvectors of a Laplacian matrices. Then,
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The Laplacian matrix is,

L(Lpn,Z) =
- =l 0 0 Rh | L
=1 2 -1 0 .
(0 Pl =1 M R |
0 g y=l . .m— 1 I |
0 0 =1 =T, e W=l =1
0 0 —F v ~1 — n-—1 (n+2)x(n+2)
The characteristic polynomial is |L - A | = 0.
L = A =
i—-1 =1 0.+ 0 0 0
-1 2-2 -1 0 0 0
0 -1 n—A24 ] -1 -1
R | -1 n—.l—il -1 . -1
0 0 -1 -1 w n—1—-41 -1
0 0 -1 -1 =il n—1-21 (n+2)x(n42)

—(-1)"(A—n)"2[ (A - 3h +1){ [222 2n- DA - 24
+2n + 1)— (A2 -2A—
nd+2n)]} - (A= 1)*]

—(—D"AA -2 [ X - (n +4) A+ (3n + 4) -
(n+2)]
The characteristic polynomial of Lollipop graph LP, ,1s,
AQA=n)"2 [ - +HV+3Bn + 4)A(n+2)]=0.
Laplacian cigenvalues are A = 0, A = n with multiplicity (1 — 2)
and the remaining eigenvalues are the solution of the equation
B-m+HA2 + Bn+HA-(n+2) =0.
Let

fA=B-m+HAP +@Bn+HA-(n+2)

f0)=-n+2)<0
f=0-(n+4)1> + Bn + 4)-(n+2)
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=n—1 >0 ifn>2
fM)=n®-( +4Hn? + G3n + 4n-(n+2)
=—-(n-1D(n-2)<0 ifn>2
ehTremaining two eigenvalues are in the intervalQ < A< 1and
14 €n
Considering figure 2, it is also clear that the dnocessmallest root jg
less than 1.

e —_—
: a
; TRy Ee e T e i 5 7 B z T
)
\\
2 e
‘\
™ ;
- S 3 .
LY :
No LA ]
‘ﬁf_ulum:eomwrsmmm‘
(@)n=35,m=2 (b). n=25, m=2 (c) n=100, m=2

Figure 2: plot of f(1) vs A of Laplacian matrix for n=5, n=25 and
n=100

Observations:

Let 1, be the second smallest eigenvalue and U =
(U1, ..., Uy4p)the second eigenvector of LP, ,. Then
W=ufori=4,...,n+2.

We note that, whenu,,u, > 0 then Uy Difor i = By + 2
andwhenul,uz <Othen u; >0 fori =3,...,n+ 2.

285




Partition of a Lollipop graph

Minimum normalized cut of a Lollipop graph
Theorem 1[2]

Letn > 3 and m > 1. For a Lollipop graph LE, .,

Mcut(LP, )
( 2m+nn—1) o <n2—n+4)
Gm-DA+nm-\ - 2 )
4 S nz—n+4)
E pm+nm—1n(e it e T
0 42m+nn - 1)) n?—n+4
(n(n—1)+2(m—1))(2(m+1)+n(n—1))(k$Zandm> 2 )‘
2+nn—1) (m=1)
L n+Dmn-1) R e
where k = —————2m+n(:_1)+2.

Proof:

Let LB, ,, = (V,E) with V = {01, %21+ 01 X Y1 Y21 - -2 Yn Jy Where Vp =
{xlleJ--'rxm } andVK = {yliyZ!"‘Jyn }

Case I:

LetA; c V such that 4; = {x; |1 < i < m} then V A ={i|1sis
n} and

cut(4;,V\Aq) =1,
vol(4,) = 2m — 1,
G T ?_F <
X1
y Xt
vol(V\A)) =n(n—1) +1
Then,
1 1
Ny = Ncut(4,,V\A;) = 1X (Zm =k * nn—-1)+ 1)

& 2m+nn-—1)
T [nn-1)+1]2m-1)
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Case I1:
Let A, €V such that 4, = fxi[1<i<mju {y1} then V\A4, =
{y:i12<i<n}and
cut(4;, V\A;) =n—1,
vol(4;) =2m+n—1,
vol(V\4;) = (n -

Then, Xm
1
2m+n—1+Cn—1)2)
Zm+n(n—1)
T (-DEmtn-1)

Ny = Neut(A,,V\4,) = (n— 1) x (

Case I1I:

Let A;cV such that Az ={xll<i<k} then
VNAz={xlk+1<i<m}u {yil1 <i<n} and cut(As, V\A4;) =
1,

vol(A3) = 2k — 1,

vol(V\A3) =n(n—1)+ 1+ 0 X +1X),

Then,
Zm+nn-1)

N3(k) = Neut (43, V\43) = [1+2(m—k) +n(n - D] 2k - 1)

For the minimum or maximum of Ns, differentiate N3 (k) with respect to
k

dNs(k)
dk
_~[2m+ntn - DI[(1+2(m - k) +n(n - 1)) X 2+ (2k — 1)(-2)]
3 [1+2(m— k) + n(n — D2(2k - 1)
_22m+n(n-D2m+nn-1)+2 - 4k]
[ +2m—-k) +nn- D]?(2k — 1)2
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dN3 (k)

Tk =0 then
= dNs(k
Whon Tyl 2m+n(: 1)+2 , d3k( b 0 and  whel
2m+n(n—1)+2 dN3 (k)
Feere v il o )

2m4+n(n—1)+2

Therefore, when k = , N3(k)is the minimum value.

4
1<k<m
2m+nn—1)+2
< <m
4
nn—1)+2
2 (n—1)
2
Since k is an integer,
Minimum N3 (k)
Zm+n(n—1)

[1+2(m—(w))ﬂi(n—l)](Z(_2m+“(ﬂ—1}+z) 5
2Zm+n(n—1)]x4
[2+(2m—n(n 1)-2)+2n(n—1)](2m+n(n-1)+2-2)

4
—(2m+n(n_1))smcem > piley L b and k € Z

If k is not a integer,

Letk =k = M 4 Lis integer
w2m+nn—-1)+2 is an even number, therefore

2m4n(n—-1)+2

[

should be integer.
2m+n(n-1)
[1+2( (2m+n(n 1)+2 1))+n = 1)](2 (2m+n(n 1)+2 1) ~1)

Ns(k +3) =

4
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L [2m+n(n—1)]x4

B [2m+n(n-1)-2][2m+n(n-1)+2] since m >

andk & Z

nn—-1)+2
2

- 2m+n(n—1)
N3(k =2)

[1+2 (m —(w_l)) +n(n—1)](2 (2m+n(n*1)+2_%)_‘1)

4 2 Y

- [2m+n(n—1)]x4 :
[Zm+n(n—1)+2][2m+n(n_1)_2] since m >

n(n-1)+2
2

We have ,N; (k + %) = Ns(k — %)

and k ¢ Z

Case IV:

LetA; © Vsuchthat Ay ={y;|j <i<j+p} then
VNAy={xllsismyu{yll<i<jju{y|j+B<i<n} and
cut(44, V\Aq) = B(n— B),

vol(Ag) = B(n— 1
vol(V\Ay) = 2m + (n — R

Then,
N:;, = Ncut(Aq,, V\A4)

1
=pf(n—p)x (ﬁ(n—1)+2m+(n—ﬁ)(n—1))
(n—p)[2m + n(n - 1)]
[2m + (n =) (n—1D](n - 1)
Comparing N, with N,
___-=pm+nc-1)] 2m+n(n—1)
T Rmt-pE-DIM-1) (n-DEm+n-1)

[2Zm+n(n-1D]2Zm(n—g-1)} = o
2m+(n—)(n—1)](n-1)(2m+n-1) =4 # pe Dol

Nq, > Nz

N, =N,
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Therefore we can ignore Case IV.
Comparing Ny with N, and Nj,
By lemma 2(2)

N =N,
And lemma 2(1) implies, if m S% (n*—n+4) then (a—1)>
cl@),2<a<m)

s Ny < N3
Therefore when 2 < m < % (n?—n+4),

Mcut(LP ) = Ny

ifm > (n2 —n+4) > (> -n+2),
By Lemma 2(1) we have,

N3 < N;
Compare the value of N3(k), N3 (.’c + %) with N,

4 Zm+nn-1)

(2m+n(n-1)) T (-1DEm+n-1)

_(n=1)2(4—n®)—4mZ+4m(n—1)(2-n)
T (r-1DE@m+n-1)(2m+n(n-1))

N3 (k) < N,sincem > ne-D ondk € Z

1
M@+Q—M

N3 (k) = N, =

<0 “nz=3

2m+nn-1]x4
T Rm+n(n-1)-=-2]2m+nn-1)+2]
2Zm+n(n—-1)
T (h-DC2m+n-1)
Em+nn-1]x[4n-1)Cm+n-1)-2m+nn—-1) -2][2m +nn-1)+2
= m+nn-1)-2]2Zm+nn-D+2](n—-1DC2m+n—-1)
2m+n(n—1)] x [(n — 1)*(4 = n®) + 4m(n — 1)(2 — n) — 4(m? — 1)]
" [Cm+nn-1)?2-4]n-1D2m+n—-1)
<0vnz23m=21
N3 (k + %) < Njsincem > Mnﬁz—-—-p—ﬁand keZ
n(n—-1)+4
T

when m >
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N5 (k) keZ

~ Mcut(LP,,,) = 1
(1Prn) N, (k . E) kez
Ifm=1
_ 2+n(n-1) _ 24n(n-1)
1= [n(n—1)+1] dna Nz -

(n—1)(n+1)
(N3(k) does not consider when m = 1, because we considered
only k<m)
_ _ 2+n(n-1) _ 24n(n-1)
N2 =Ny (-D(n+1)  [n(n—1)+1]
[2+n(n-1)](2-n)

(=) (1) +1] <0
Ny <Ny whenm =1
Therefore when = 1,
2+nn—-1)
t(LP, ) =
Meut( ) m—1D(n+1)

sign graphs
The graph LB, ,, can be partitioned by considering the sign

patterns of eigenvector corresponding to the second smallest
eigenvalue of a difference Laplacian matrix.
(a).Whenn = 5,m = 2(b ). Whenn = S5m=1

0.2539
-0.2236
-0.223 5
4
-0.2236
6
02236
0.0000
00
04008 7504 L
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(c)Whenn =5,m =13

Figure 3:Secohd smallest eigenvector of differenceLaplacian
matrix of%.P, ,, 18

1312 111 8 765 4 3 2

LaplacimllSCut = Grap}11 partition by considering the sign patterns of
eigenvector correspond

to the second smallest eigenvalue of difference
Laplacian matrix.

Normalized cut := Graph partition by considering the sign
patterns of eigenvector

correspond to thesecond smallest eigenvalue of normalized
Laplacian

matrix,

-0.2673

-0.2673

0.3478

-0.2673 -0.2673

28
Whenn=5m=2< = L
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(@) (b)
(c)
(b)
3 7 7 3 7
2 1 2 1 2 l
4 3 4 3 4 3
(b) (c)

Normalized cut(LP;;)Laplacian cut(LPs,)Mcut(LPs ;)

.
Whenn=5m =13 >2 i

16 18

131211109 8 765 4 3

21
Normalized cut(LPs,3)

Laplacian cut(LPs,3)

17

18

16 13121110 ¢ 8 76 5 43 21

- — - e e Ma‘t(LP5,13)
15 14
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Whenn=5m=1
(a) (b)
(c)

| —

Normalized cut(LPs1)Laplacian cut(LPs )Mcut(LPs )
Figure 4: Normalized cut , Laplacian cut and Mcut of some
LE, ., graphs

DISCUSSION

We discussed properties of Lollipop graph LP,,. and the
characteristics of its partitioning and alsoderive the characteristic
polynomials of Laplacian matrix, of LB, , . Then compare
partitions obtained from minimum normalized cut and sign graphs.

NOISULCNOC
We review the properties of Lollipop graph LB, , and the
characteristics of its partitioning, We found the characteristic
polynomials of Difference Laplacian matrix of LF, ,,. We also
derived formula for minimum normalized cut of Lollipop graph
LP, ;mand considered the sign pattern based on second smallest
eigenvalue.
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APPENDIX
MATLAB coding for Adjacency matrix of LP,
function [A n

m]=Adj acentMatrixHLollip0pGraph_2 ()

N=input ('Enter the number of vertices of
Complete graph: ');

M=input ('Enter the number of vertices of
path: ');

sLollipop graph LP(n,m)
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sn=number of vertices of complete graph
$m=number of vertices of path
A=zeros (n+m) ;
for i=1l:m
A(i,i+1)=1;
A(i+1l,1)=1;

end

for j=m+l:m+n

for k=m+1l:m+n

if k == 7
A(k,k)=0;
else

A(j,k)=1;

end
end
end

MATLAB coding for Laplacian matrix of LP,, ,
function
[D,L]=Differencelaplacian_LollipopGraph_2 ()

without loop & multiple edges
D-degree matrix

o of o°

L-Laplacian matrix

A=AdjacentMatrix LollipopGraph_ 2();
sW=weightAdjacentMatrix LollipopGraph();
p=size(A);

d=sum(A') ;

D=zeros (p):

L=zeros (p);

tori=lip
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MATLAB coding for Normalized Laplacian matrix of LPsin
snormalized laplacian matrix of lollipop
graph

Function [NL
D]=NormalizedLaplacianHLollipopGraph ()

without loop & multiple edges
D-degree matrix

L-Laplacian matrix
NL-Normalized Laplacian matrix

o o oe e

A=AdjacentMatrix_LollipopGraph_Z();
[D,L]=DifferenceLaplacian_LollipopGraph_Z();
n=size (A);

NL=zeros (n) ;

NL=D"(-1/2) * (D-A) *D" (-1/2) ;

eigenvalues=eig(NL);
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