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Abstract 

High mobility and rapid topological changes are characteristics of vehicular networks. As a result, 

in contrast to other networks, the connections between the automobiles are erratic and only last 

a brief period of time. Therefore, understanding the connection lifespan is crucial for creating 

effective communication between vehicles without packet losses. Only sensor-based 

measurements have been taken into account in previous efforts in this field to forecast link 

lifetimes. However, as they lack knowledge about the vehicle's expected future behavior, we 

anticipate that estimating link lifetimes solely from sensor data may result in less accurate 

estimates. We suggest using throttle and steering angle driving action outputs in conjunction with 

brake components to improve sensor readings and provide more futuristic relative motion 

information in order to address this issue. In particular, we use throttle changes to calculate jerk 

and integrate and combine the sensor signals to calculate average acceleration and velocity 

values. We then calculate new motion components, taking into account the steering angle change 

when it varies from the prior timestep. We suggested modeling the connection lifetime prediction 

problem through optimization, taking into account the relative velocity of the automobiles, 

adding jerk, and modifying with driving outputs. But because of that method's high computational 

cost, we also suggest a suboptimal method based on deep neural networks (DNN) to lower the 

computational difficulty. The proposed model is simulated utilizing NS3 for vehicular data 

transmission and CARLA for self-driving by leveraging a pre-trained driving model. The findings 

demonstrate that, in comparison to current methods, the link lifetime forecasts of the suggested 

models are substantially closer to actual link durations; as a consequence, the suggested method 

may be applied to enhance vehicular communication. 

Keywords: Link lifetime, optimization, vehicular communication, vehicle control maneuver. 
 

 
 

Article info  ISSN (E-Copy): ISSN 3051-5262 

ISSN (Hard copy): ISSN 3051-5602 

Doi: https://doi.org/10.4038/jmtr.v10i1.24  

ORCID iD:  https://orcid.org/0000-0002-3045-1596     

*Corresponding author:   

E-mail address: nilmantha@eie.ruh.ac.lik   

                               (P.A.D.S.N. Wijesekara) 

© 2024 JMTR, CC BY-NC-SA 

 

Article history: 

Received 30th April 2025 

Received in revised form 25th May 2025 

Accepted 15th June 2025 

Available online 30th June 2025 

 

Journal of Multidisciplinary and Translational 
Research (JMTR) 

 
journal homepage: https://journals.kln.ac.lk/jmtr/  

https://doi.org/10.4038/jmtr.v10i1.24
https://orcid.org/0000-0002-3045-1596
mailto:nilmantha@eie.ruh.ac.lik
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://journals.kln.ac.lk/jmtr/


Journal of Multidisciplinary and Translational Research (JMTR), Volume 10, Issue I P.A.D.S.N. Wijesekara 
 

 

95 | P a g e  

 

 

Introduction 

The driving decisions in an intelligent transportation system may be used to inform decisions in 

the vehicular network as autonomous driving predictions show how probable the automobile is 

to perform in near-future timesteps (Zhang & Lu, 2020). The output of autonomous driving in an 

intelligent vehicular network can be applied to prediction tasks in vehicular communication in 

addition to driving (Zhang et. al., 2018). As a result, it can connect vehicle communication with 

autonomous driving. Therefore, to enhance vehicle communication and driving performance, 

precise driving action estimation is necessary. Existing research studies relevant to link lifetime 

estimation do not examine future vehicle behavior and do not account for jerk in approximation 

of link lifetime; instead, they use current timestep sensor data to forecast lifetime (Wijesekara et. 

al., 2023; Sudheera et. al., 2019). In software-defined vehicular networks, where the centralized 

controller may make choices like routing improvements based on the network's link lifespan 

information, link lifetime estimate is very helpful (Cardona et. al., 2020). Furthermore, link 

lifetime estimations may be used to make distributed choices in vehicular ad hoc networks, 

allowing for the improvement of those networks through precise link lifetime projections (Yan 

and Olariu, 2011). As the future paths of the cars may alter as a result of changes in 

autonomous/manual driving outputs, we anticipate that this may make projections less accurate.  

Assuming reasonably stable or statistically modeled link durations, Geng et al. (2024) and 

Almuseelem et al. (2025) concentrated on resource optimization and network performance with 

delay/energy tradeoffs. However, predictive link lifetime estimation based on vehicle dynamics 

isn't specifically highlighted in those works. Although they do not specifically focus on link 

lifetime prediction algorithms, researchers such as Nkenyereye et al. (2019) and Shah et al. 

(2020) have addressed problems in software-defined vehicular networks (SDVN), where efficient 

link lifetime estimation is crucial for different tasks such as routing and control decisions. Link 

lifetime estimates in these systems are frequently abstracted or simplified without taking jerk 

effects or sophisticated motion dynamics into account. Instead of predicting the lifetime of a 

communication link, Li et al. (2020) have concentrated on traffic flow stability. They did not 

incorporate autonomous driving outputs (steering, throttle) for link predictions. However, they 

did use empirical jerk for vehicle following. 

Current link lifetime prediction techniques ignore future autonomous driving system vehicle 

behavior in favor of only using current sensor data. Vehicle jerk dynamics and driving action 

outputs have never been integrated for communication prediction in any previous work. To the 

best of our knowledge, this study is the only study that utilizes autonomous driving outputs to 

forecast link lifetimes. 

Consequently, the driving output is utilized in this work to enhance the connection lifespan 

forecasts for vehicle communication. In particular, the outputs of the autonomous driving model 

are used to precisely update the vehicle dynamics sensor readings, which are then fed into the 

link lifespan prediction model that accounts for jerk to provide precise forecasts. To lower the 

computing complexity, we provide a simpler suboptimal method albeit with lower accuracy 

utilizing deep learning and treat the prediction problem as a non-linear optimization task. In 

particular, more precise and future relative motion optimized by driving outputs is incorporated 
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to determine the time to complete remaining relative displacement to the maximum transmission 

distance. 

The following succinctly describes the novelty of this study. First, this study integrated sensor 

data with autonomous driving outputs (steering, throttle) for link prediction. To increase 

prediction accuracy, a new jerk-aware motion model was developed. Finally, two link lifespan 

estimation models with variable accuracy and computational efficiency are suggested using 

optimization and DNN. 

This study crosses several fields, like computer science by designing and optimizing DNN; 

telecommunications by studying vehicular communication aspects and link prediction; 

automotive engineering by combining jerk modeling and vehicle dynamics; and transportation 

engineering by combining autonomous driving elements. Thus, the work addresses complex 

issues in intelligent vehicular networks in a comprehensive, multidisciplinary manner (Zhang et 

al., 2020; Tan et al., 2022). 

Methodology  

Link lifetime estimation 
 

Figure 1 visually represent the variables influencing link lifetime.  

Figure 1. Link lifetime computation concept. 

 

Relative displacement (𝛿ℎ, 𝛿𝑣), relative velocity (𝛿𝑝ℎ , 𝛿𝑝𝑣), relative acceleration (𝛿𝑞ℎ , 𝛿𝑞𝑣), 

relative jerk (𝛿𝑟ℎ , 𝛿𝑟𝑣), and highest transmission range (𝑆𝑚𝑎𝑥) are the factors that impact link 

lifetime, as illustrated graphically in Figure 1. 
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(𝛿ℎ)2 + (𝛿𝑣)2 + 2(𝛿ℎ𝛿𝑝ℎ +  𝛿𝑣𝛿𝑝𝑣)𝑡 + (𝛿ℎ𝛿𝑞ℎ +  𝛿𝑣𝛿𝑞𝑣 + (𝛿𝑝ℎ)2 + (𝛿𝑝𝑣)2)𝑡2 + (𝛿𝑝ℎ𝛿𝑞ℎ +

 𝛿𝑝𝑣𝛿𝑞𝑣 +
1

3
(𝛿𝑟ℎ𝛿ℎ +  𝛿𝑟𝑣𝛿𝑣)) 𝑡3 +  (

1

4
((𝛿𝑞ℎ)2 +  (𝛿𝑞𝑣)2) +

1

3
(𝛿𝑟ℎ𝛿𝑝ℎ +  𝛿𝑟𝑣𝛿𝑝𝑣)) 𝑡4 +

 
1

6
(𝛿𝑟ℎ𝛿𝑞ℎ +  𝛿𝑟𝑣𝛿𝑞𝑣)𝑡5 +

1

36
((𝛿𝑟ℎ)2 + (𝛿𝑟𝑣)2)𝑡6 ≤  𝑆𝑚𝑎𝑥

2                            (1)       

 
 

Given the restriction in inequality (1), the link lifetime calculation can thus be represented as an 

optimization assignment to maximize t. To replace the optimization problem, the DNN shown in 

Figure 2 was developed and built. DNN was used to reduce computational complexity, as the 

inequality in (1) is of order 6 and is thus computationally inefficient. 

 
 

 
Figure 2. Proposed DNN for link lifetime estimation. The input layer contains 252 (21x12) 

neurons. Connections between layers are indicated with standard arrows and layer 
names are labeled. 

DNN has two hidden layers of size 1024 (Figure 2). The solution is to learn to predict link lifetime 

as a regression challenge. When the link lifespan forecasting paradigm is centralized, as in the 

case of an SDN, batch predictions can be used to make multiple predictions with a short inference 

time. Considering the maximum value of inequality (1), it is a sixth-order polynomial. Because of 

the multiplication of vector magnitudes, the neural network needs 1–12th order values of the 

vectors to obtain the best approximation of the link lifetime. As a result, the input layer contains 

252 (21x12) neurons.  
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Impact of throttle 

The vehicle's force is in direct relation to the throttle value (F) (Pourciau, 2006). Equation (2) 

thus provides the link between the throttle and jerk (r). 

 
𝜆(𝛥𝐹) = 𝑀𝑟                                (2) 

 
M is the vehicle's mass, ΔF is the change in throttle value, and λ is a constant in Equation (2). 

Velocity, jerk, and acceleration are all collinear while the steering angle is constant; centripetal 

acceleration may be disregarded because it has no bearing on link lifespan prediction. Let β be 

the angle that a vector makes with the horizontal axis, and let A be such a generic vector. Then, 

𝑟ℎ = 𝑟𝑐𝑜𝑠(𝛽) and 𝑟𝑣 = 𝑟𝑠𝑖𝑛(𝛽). 

Let ΔT be the constant jerk time. Equation (3) provides the average anticipated acceleration (q) 

when qsen is the acceleration that the vehicle senses.  

|𝑞| = |𝑞𝑠𝑒𝑛| +
|𝑟|𝛥𝑇

2
                      (3) 

Likewise, the average velocity value (p) may be expressed using Equation (4).  

 

|𝑝| = |𝑝𝑠𝑒𝑛| +
|𝑞|𝛥𝑇

2
+

|𝑟|𝛥𝑇2

4
      (4) 

 

Impact of steering angle 

If the throttle and steering angle are both altered, the throttle-related vectors should be calculated 

first, followed by the steering-angle-based calculations. 

 The vector alignment before (grey color) and after (black color) the steering angle (ΔΩ) 

modification is depicted in Figure 3. 

Figure 3. Steering angle impact. A is a vector that is an output vector computed for throttle 
adjustments.  
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Let 𝐴ℎ,𝑜𝑙𝑑 = |𝐴|cos (𝛽) and 𝐴𝑣,𝑜𝑙𝑑 = |𝐴|sin (𝛽) be the h and v elements of the vector A by not 

considering the impact of steering angle rotation. Then, 𝐴ℎ,𝑛𝑒𝑤 = cos(𝛽 + 𝛥𝛺) and 𝐴𝑣,𝑛𝑒𝑤 =

|𝐴|sin (𝛽 + 𝛥𝛺) are the forthcoming vectors examining the impact of steering angle rotation. 

Thus, 𝐴ℎ,𝑛𝑒𝑤 and 𝐴𝑣,𝑛𝑒𝑤 can be deduced as shown in Equations (5) and (6).  

 
𝐴𝑣,𝑛𝑒𝑤 = |𝐴| sin(𝛽 + 𝛥𝛺) =  𝐴𝑣,𝑜𝑙𝑑 cos(𝛥𝛺) + 𝐴ℎ,𝑜𝑙𝑑 sin(𝛥𝛺)      (5) 

 
𝐴ℎ,𝑛𝑒𝑤 = |𝐴| cos(𝛽 + 𝛥𝛺)  =  𝐴ℎ,𝑜𝑙𝑑 cos(𝛥𝛺) − 𝐴𝑣,𝑜𝑙𝑑 sin(𝛥𝛺)     (6) 

 

The vectors acceleration, jerk, and velocity are all part of A. Only the vectors specified above have 

an impact on the vehicle's future trajectory because the relative displacement has already been 

calculated for the current time stamp. 

Results  

Self-driving scenarios were conducted in client-server mode and pedestrians and traffic were 

simulated using CARLA (Wijesekara, 2022). In CARLA, different towns which included highways, 

urban, and sub-urban traffic conditions were selected to simulate different traffic scenarios. The 

cars' driving action output (throttle and steering) and mobility data were then extracted and sent 

to the NS3 (Riley and Henderson, 2010) for real-time communication. Traffic flow and driver 

behavior parameters were derived from recent autonomous driving studies to validate ground 

dataset fidelity in verified vehicle movement patterns (Terapaptommakol et al., 2022). NS3 

merely simulates automobiles because there are only linkages between them. GurobiPy 

commercial program was utilized for optimization. 

Performance analysis metrics 

Link lifetime Mean Absolute Error (MAE), which was calculated using Equation (7), as the 

measure to assess the performance of the link lifetime prediction model was utilized first. 

𝑀𝐴𝐸 =
1

𝐵
∑

1

𝑇
∑

1

𝐽
∑

1

𝐽
∑|𝑇𝑝𝑖𝑡𝑎𝑏 −  𝑇𝑔𝑖𝑡𝑎𝑏|     (7)

𝐽

𝑏=1

𝐽

𝑎=1

𝑇

𝑡=1

𝐵

𝑖=1

 

 

T is the link lifespan, a and b are indices of nodes, i is the test scenario index, p is the projected 

value, and g is the ground truth in Equation (7). Additionally, J is the total amount of nodes, B 

denotes the total number of experiments, T notates the aggregate count of temporal steps, and t 

is the temporal step. Thus, for vehicle pairs a and b at time t for test scenario i, Tpitab and Tgitab 

stand for the expected and ground truth link lifespan values, respectively, in Equation (7). 

Then, the performance of a link lifetime-driven routing technique was evaluated (Wijesekara and 

Gunawardena, 2023) using the packet delivery ratio (PDR), as given in Equation (8).  
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𝑃𝐷𝑅 =
1

𝐷
∑

1

𝐹
∑

1

𝑁𝑖𝑓

𝐹

𝑓=1

𝐷

𝑖=1

 ∑ 𝜆𝑖𝑓𝑘

𝑁𝑖𝑓

𝑘=1

                                        (8) 

In Equation (8), index i represents the ith routing cycle, index f represents the fth flow, D is the 

aggregate count of routing cycles, F is the overall count of flows, 𝜆𝑖𝑓𝑘 is the event that the kth 

packet of the fth flow in the ith routing cycle is delivered at the destination, and 𝑁𝑖𝑓  is the aggregate 

quantity of packets of the fth flow. 

Performance analysis 

A 673, 000-item dataset was created by optimizing the differential motion variables and driving 

motions for the purpose of training the DNN for link lifetime estimation (Wijesekara, 2025). When 

data is normalized within a range of 100 s, the training mean square error (MSE) of the link 

lifetime prediction DNN model was as small as 10-7, or 33 ms. Prior to entering the data into the 

DNN, the values were normalized in the scale [-1, 1] after computing terms up to the 12th order 

during preprocessing.  The data were normalized by using 100 s, because the average link lifetime 

was around 11 s with a 95% confidence interval upper limit way below 100 s. By examining the 

training curve, the number of hidden tiers and neurons in each of them was determined 

experimentally. Adam (Ogundokun, 2022) was employed as the optimizer, MSE (Jin and 

Montúfar, 2023) as the loss function, and ReLU (Lin & Shen, 2018) was employed as the inner and 

output layer activation function.  

The Adam optimizer was used to train the DNN with momentum parameters β₁ = 0.9 and β₂ = 

0.999 and a learning rate of 0.001. Training was conducted using a batch size of 256 over a 

maximum of 200 epochs using the MSE loss function. To avoid overfitting, early stopping was 

applied with a 20-epoch patience. The dataset was divided into three parts for validation as 10% 

for testing, 10% for validation, and 80% for training. To make sure that the performance of the 

model was robust, a 5-fold cross-validation was also carried out. First, the performance of the 

model was assessed on the held-out test set by using the proper metrics. Then, a grid search was 

used for hyperparameter tuning in some variables like hidden layer sizes, which had values of 

256, 512, and 1024; dropout rates, which had values of 0.1, 0.2, and 0.3; and learning rates, for 

which values of 0.0001, 0.001, and 0.01 were tested. Finally, the model was implemented using 

TensorFlow, and the DNN model could achieve an average inference time of 8 milliseconds per 

prediction, with a total training time of roughly 110 minutes on an NVIDIA RTX 3080 GPU, which 

was used to train and test the model.  

The performance of the suggested DNN-driven link lifetime estimation (proposed DNN) and the 

suggested optimization-driven link lifetime estimation (proposed optimization) was contrasted 

with the most advanced sensor-driven link lifetime estimations (sensor-driven machine learning 

(Wijesekara, 2023) and sensor-driven optimization (Sudheera et. al., 2019)).  The 95% 

confidence intervals shown by the error bars in Figures 4 and 5 are calculated as mean ± 1.96 × 

SEM, where SEM is the standard error of the mean over total simulation runs using various 

random seeds. 
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Exact link lifetime analysis 

Using the driving behaviors that the self-driving model predicts, the sensor values were modified 

in this experiment. Predicted lives are then documented when the predictions are acquired at 

various timesteps during the experiment. Additionally, the timestamps were recorded when a 

link expires and when a new link is made. As it may happen in a real-world vehicle network, 

transmission power in this experiment was set to a fixed value to ensure that the maximum 

transmission distance is maintained as a constant. The number of vehicle nodes were changed 

from two to ten to do 100 experimental runs. Lastly, the MAE was computed, and Figure 4 displays 

the outcomes. The mean link lifetime for different numbers of vehicles ranged from 5.4 s to 11.3 

s, with their standard deviations ranging from 1.7 s to 3.8 s. The 95% confidence interval 

maximum value is thus quite below 100 s. So, 100 s was used to normalize the link lifetimes by 

considering 100 s as the upper limit in a worst-case scenario. 

  Figure 4. Link lifetime estimation performance assessment. 

Under any number of automobile nodes, the MAE of both suggested models is lower than that of 

state-of-the-art methods, as shown in Figure 4. Estimations are more correct than those based on 

present sensor readings because the suggested models account for jerk and modify differential 

sensor readings based on autonomous driving actions. However, all the prediction abilities of the 

model decline as vehicle density increases.  

This is because, as the number of automobiles rises, the relative motion becomes more dynamic, 

causing the motion of the vehicles to vary more often than it would in a scenario with fewer 

people. This outcome demonstrates the superiority of the proposed link lifetime estimation 

method over current ones. 
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Link-lifetime-driven routing evaluation 
 

Figure 5. Link lifetime-driven routing performance assessment. 

In this experiment, different numbers of packets from random sources were sent to random 

destinations in each routing cycle, where the number of flows is changed in each routing 

experiment. The number of nodes in this experiment were fixed at 10. For the link lifetime-driven 

routing (Wijesekara and Gunawardena, 2023), each of the precedingly used frameworks were 

separately used for link lifetime estimation. The results of this experiment are shown in Figure 5.  

As demonstrated in Figure 5, under any number of flows, the PDR of the proposed optimization-

driven link lifetime-based routing is higher than when any other technique is used for link lifetime 

estimation. The reason for the preceding behavior is that due to accurate link lifetime estimations, 

the PDR of routing is enhanced. The performance is then followed by proposed DNN-driven link 

lifetime-based routing, sensor-driven optimization-based routing, and sensor-driven DNN-based 

routing. Moreover, with the increment of the number of flows, the PDR of all techniques decreases 

due to the increment of contention in the network due to the existence of multiple parallel flows. 

However, the previously mentioned trend is still prevalent irrespective of the number of flows. 

Thus, it can be concluded that the proposed link lifetime estimation model improves link lifetime-

driven routing applications.  

Discussion 

Optimization problem of the inequality (1) is the solution of a sixth-order polynomial inequality, 

complexity of which scales as O(n6), where n is the number of vehicles. On the other hand, 

regardless of the number of vehicles, the suggested DNN inference entails a fixed number of 

matrix multiplications with complexity O(k), where k is the number of total neurons. According 

to the benchmarks used in this study, the average DNN inference latency for the tested scenario 

(up to 10 vehicles) is roughly 8 ms, whereas each instance of numerical optimization takes 45 to 

120 ms. This validates the computational efficiency of the suboptimal DNN approach by achieving 

roughly 5.6 times faster execution with only approximately a 31.2% relative increase in MAE 

(2.55% normalized to a 1000 ms maximum error). Also, the computational complexity of DNN is 
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lower due to its batch predictions, while that of the optimization approach is higher with the 

increment of the number of nodes, as it does not have such capability. 

Ablation studies were performed comparing model accuracy with and without jerk consideration 

to validate the significance of including jerk in link lifetime prediction. The results showed 

approximately a 23% error reduction compared to sensor-driven optimization when jerk is 

included. Empirical results are reflected in the jerk ranges used in CARLA simulations: normal 

driving jerk values range from 0.5 to 3.2 m/s³, while emergency maneuvers can reach up to 8.5 

m/s³ (Li et al., 2020). To guarantee realistic throttle and brake profiles, simulation parameters 

were adjusted in comparison to actual driving datasets (Khan et al., 2019). As a result, jerk 

incorporation captures significant dynamic vehicle behavior that influences link stability. 

The suggested optimization method consistently outperforms competing techniques across 

vehicle counts of 2 to 10 nodes, according to the link lifetime estimation results. On average, the 

suggested optimization reduces the MAE by about 25.9% when compared to the suggested DNN 

model, 43.1% when compared to sensor-based optimization, and 51.5% when compared to 

sensor-based DNN techniques. These improvements are statistically significant (p < 0.001), 

according to paired t-test analyses for the five node count settings, with magnitudes of t-values 

exceeding 9 across comparisons. These results confirm that combining jerk-aware optimization 

with autonomous driving outputs can significantly increase the accuracy of link lifetime 

prediction in dynamic vehicular scenarios. 

Conclusion  
 

This article introduced a unique method for link lifetime estimate in automotive networks by 

enhancing sensor-driven motion readings with the addition of drive outputs towards futuristic 

motion instead of sensor readings in the current timestep. This study presents a low-complexity, 

suboptimal deep neural network to replace the optimization to simulate the problem, including 

relative jerk. By employing autonomous driving outputs to alter differential motion parameters 

in future (incorporating how the motion of the vehicle may change in the near future using 

throttle and steering angle changes), the accuracy of the link lifespan forecast was demonstrated 

to be greater than that of conventional sensor-based predictions. Specifically, the suggested 

optimization technique shows statistically significant performance improvements over both deep 

learning and optimization baselines and reduces link lifetime prediction errors by up to 51.5% in 

comparison to traditional sensor-based techniques, indicating its potential to improve vehicular 

communication reliability. Consequently, the suggested model may be used to estimate link 

lifetimes and offer precise information on link lifetime to enhance communication in smart 

vehicular networks. 
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